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SELF-EXCITING POTENTIAL FLUID FLOW,
SURROUNDED BY INHOMOGENEITIES, NEAR
A CIRCULAR GRID OF PROFILES

E. S. Belyanovskii and v. B. Kurzin UDC 533.6.011

When a fluid flows through the grid of a turbine machine, in many cases, self-excitation of the velocity
field surrounded by inhomogeneities, rotating in the direction of rotation of the grid, occurs. Such phenomena
include a rotating discontinuity, which arises in certain regimes in axial turbine machines, In radial grids of
centrifugal fans, the rotation of the velocity field was noted and described by Zhukovskii [1]. Recently, a sim-
ilar phenomenon was also observed while studying fluid flow through a circular grid [2]. The surrounding non-
uniformity of the velocity field in [2] was modeled by a displacement of a vortex source from the center of the
grid. However, the mechanism for the motion of the vortex source was not examined.

In this paper, the indicated model of fluid flow through a planar circular grid is closed with the help of
the equations of motion of the vortex source in the velocity field, perturbed by the profiles of the grid, In addi-
tion, the problem of self~excitation of the surrounding nonuniformity is reduced to the problem of the instabil-
ity of the motion of the vortex source,

1. Experiment. The experiment was performed in a flow channel, consisting «f an open tank with diame-
ter 2 m and height 0.8 m (Fig. 1). The tank 1 contained a disk 2 with an aperture at the center, in which a dif-
fuser 3 was inserted. A rod 4, on which a derive shaft 5 is mounted, rotating with the grid 6, was placed on the
disk 2, The shaft was rotated by an electrical motor 7 via belt drive 8,

The flow was visualized by introducing confetti into the flow. Figure 2 presents photographs which were
made by a camera in a fixed position (Fig. 2a) and rotating synchronously with the grid (Fig. 2b). The photo-
graphs clearly show the circular nonuniformity of the velocity field, which is manifested, for example, in the
different angles of flow onto the profile, It is noted that this nonuniformity rotates with = 50 times lower angu-
lar velocity than the rotational velocity of the grid.

2. Formulation of the Problem. We shall examine the two-dimensional flow of an ideal incompressible
fluid through a circular grid, uniformly rotating with angular velocity w (Fig. 3). As is well known, the fluid
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Fig. 1

flow onto the circular grid is usually modeled by a vortex source, situated at the center of the grid. We shall
assume that a random perturbation displaces it from the center into some position &,. Then, the vortex source
begins to move with the velocity of the fluid at the point € (t), with which its position coincides at the given mo-
ment, i.e.,

deldt = v(e). (2.1)

The following question arises: does there exist a stable limit cycle of motion of the vortex source satis-
fying Eq. (2.1)? We shall solve this problem assuming that the absolute motion of the fluid outside the vortex
source, outside the profiles, and outside the vortex wakes, converging with the profiles, is a potential flow.
Then, the complex velocity of flow of the fluid can be determined from the expression

;99

v()= Zn (z—t:)+ L

where g and I';are parameters determining the intensity of the vortex source, and ¢ is a harmonic function
satisfying the following boundary conditions:

condition that the fluid does not penetrate through the profile

— T (n} . E
al_zygn)_%ﬂe[_(g_ﬂ]f ($,y)ELn (n:1,’2""'N)t (2.2)

dv - z—§€

where v O(n) is the unit outer normal to the contour of the n-th profile Lp; vg,n) is the normal component of the
velocity of points on the contour of the n-th profile; N is the number of profiles in the grid; the dynamic and
kinematic conditions in the vortex wakes

Ipl =0, [ogiov] =0, (z, )= P (n=1,2,.. ., N),
where p is the fluid pressure; v, is the orientation of the normal to the lines of the contact discontinuity Zn,

simulating the vortex wakes; the condition at infinity

lim yo=0;

[zl>00
the Kutta —Zhukovskii conditions
Ap<< oo, (z,y)=c, (n=1,2,..., N),
where ¢, is the coordinate of the rear edge of the n-th profile.

3. Quasistationary Approximation for the Simplest Model of a Grid. To determine the velocity field of the
fluid flow in the first approximation, we shall model the profiles of the grid by point vortices, situated on one
fourth of the chord, and we shall satisfy the condition of impenetrability of the profile at points of the profiles
at distances 3/4 of the chord from the tip.

In the quasistationary approximation, the complex velocity of the fluid flow for this model has the expres-
sion

g—iT, & T
(2) = — o 3.1
v(2) 2n z—e +2m nglz—zn" -9

where zn = T exp[i(fy + wt)] are the coordinates of the positions of the vortices on the profile; 6y is their
angular coordinate; fort =06, + @n/N)ta —1) are determined from condition (2.2):
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Fig. 2

Re [0(zm)vo(zm)] = 0R sin g (m = 1,2, .. .5 N), (3.2)

where z,, = R exp [i (v *+ wt)] are the coordinates of the control points of the profile; vy(zm) = exp [i(am +
wt)] are the unit normals to the profiles at these points; ¢m = (27/N)(m — 1); @y = @4 + ¢ m. We shall repre-
sent the coordinate of the position of the vortex source & in the form

& == reel®, ¢ = of — 0y(f). (3.3)

Then condition (3.2) including (3.1) transforms as follows:
(@) e 2§ T InoR’sina
ie igg P S . -
Re {1—_3_—,(&“?1) . ,;2=1 f— ;ea(e,rq,m)} ; . 5.4

m=1,2...,N; r=r/R).
The solution of the system (3.4) can be found in explicit form, if the values of the intensities of the circula-
tions I'y sought are represented as trigonometric polynomials:
" N-1

Tp =7+ kz {ax cos k0, - by, sin k,), (3.5)
=1, . .

where vy, is the stationary circulation, which is identical for all profiles; ak(t), bi(t) are functions of time de-
termining the nonstationary component of the circulations arising around the profiles due to displacement of
the vortex source,

In reality, expanding the fractions entering into expression (3.4}, in the converging series and summing
these series, we obtain from (3.4) using (3.5)

N-1 ) i —1 X
— il ——p —ik{oyton) ) iNe 1 : —'N_I; 1(k%+N91) .
ne [ 1 2 - o 3 ok

4 — —io3 N d
(3?‘ ) k=1 (3.6)
NGl ~ihon . o
+k§T9 (@r + i) |} = 2noRsine (m=1,2,...,N)
After appropriate transformations we have from (3.6) the system of equations
Nt :
2 (By 08 kg -+ Ci 5in k) = anstmcc, (m =1,2,...,N), (3.7)
from which it follows that
B, = 2noR? sin aj, By = C =0 (k # 0). (3.8)

From relations (3,8), the values of y, and the functions ai(t), by (t) are determined explicitly.

To simplify the calculations, we shall examine the limiting case N — =_ Then, we obtain from (3.8)
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Yo = ({/N)2noR®* — T, — g ctg a,), a, = —(2e*/N)(g sin ko; +

+ T, cos koy), by = —(284/N)(g cos ko, — Ty sin koy). (3.9)
Substituting expressions (3.9) into Eq. (3.5), we find
: S N-y
2 I .
Tp =1y, - 2 g [gsink (o) + On) + Ty cosk (o) + 08a)]. (3.10)
h=1

Thus, the complex velocity of the fluid flow can be determined from Eq. (3.1) taking into account (3.10) as a
function of the position of the vortex source. In particular, at the point itself it will equal

N ; N-—1 . ‘ .
= 1 Ty s \ I 2 Q . 3.11
Y (B) T 2 712—-1 €1y T o 7.2_1 ge—icl — eien Yo— ¥ ; e [gsin & (03 + 6n) -+ Po COS'I,‘: (61 + 021 ( )
= = el

Expanding the fraction entering into expression (3.11), in a converging series and summing it, we find

exp[—1i (wf —

)= — R T

Substituting the value of the velocity, complex conjugate to v(e), in the equation of motion of the vortex source
(2.1) and separating its real and imaginary parts, using (3.3), we obtain

ar

daldt = —gel(ar®(l — ), (3.12)
0y = do/dt = Tp/(zr?(1 — %), (3.13)

where w, is the rate of change of the angular coordinate of the vortex source, It follows from Eq. (3.12) that
the solution of the problem stated in the quasistationary approximation for & < 1 does not have a limit cycle,.

4, Taking into Account the Effect of Vortex Wakes, As will be evident from what follows, similarly to
the system (3.12) and (3.13) in the limiting case examined N — =, the corresponding system of ordinary dif-
ferential equations is also autonomous when the influence of vortex wakes is included. It follows from here
that the limit cycle, if it exists, will represent a circle with center at the origin of coordinates (e = const). In
this case, the vortex source will move along the trajectory with constant angular velocity wg, i.e., in expres-
sion (3.3) the guantity ¢ = wyt. It also follows from (3.3) that

0,(t) = of,where ®; = ® — @, = const. (4.1)

In accordance with expression (3.6) and using (4.1), the nonstationary component of the complex velocity
of fluid flow, induced by the vortex source at the control points of the profiles, can be represented as a sum of
harmonics

i N—l ' -

- — il _—

D (om) =t 3 (a7 m) exp (— thonyt) (m=1,2,..., ). (4.2)
h=1 : .

25r

Due to the linearity of the problem, we shall represent the nonstationary components of circulations at
the profiles of the grid as a sum of the same harmonics analogously to (3.10):

N-—1 . .
T = — 2 8" {gsin [k (0,0 -+ 8) + Bil -+ To cos [k (@y6 + 04) -+ Pil}, (4.3)
k=1 .

where 6k, Sk are the amplitude coefficient and shift in phase of the k~th harmonic, arising due to the effect of
the vortex wakes.

To determine the values of 6} and By, it is necessary to find the position of the lines of the contact dis-
continuity Zn,simulating the vortex wakes, and the intensity of the vortices in these wakes at any moment in
time, For this purpose, we shall give the position of some free elementary vortex, converging with the n-th
profile, in the form

6 (0 = (@) ¥,
where 7 is the parameter determining the time interval from the moment that this vortex separates from the

profile, Assuming that the vortices connected to the h-th profile are concentrated at the point z, = r exp
[i(8y + wt)], the angular coordinate of the free vortex can be determined from the equation

Pa(0) = 8, + of — ov -+, (4.4)
where ¥ is the angle of inclination of the vortex due to its absolute motion in the circular direction.
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Using the expressions for the projections of the absolute velocity of the motion of a vortex on the radial
and circular direction

vo = dpldv = g/(2mp), vy = pdPldt = (Ty + Ny,)/(2mp),

and taking into account the initial conditions p=1, ¥ = 0 at 7= 0, we find
geln = 1 — 1), % = Ty In g, (4.5)

where

E’ = poir; To = (T, + Nyo)g.
With the help of (4.5), expression (4.4) transforms into the form

Y = en + ot _-{p(b)ﬂ (4'6)
where ¥ = (¢/2)(p2 — 1) —Tylnp; ¢ = (2nrtw)/g.

The dependence (4.68) represents the equation of the line of the vortex wake Z,,converging on the n-th
profile, for the given time t,

The vortex intensity per unit length in the wake, owing to the change in circulation around the n~th pro-
file with respect to the k~th harmonic, can be determined from equation [3]

g oT®
v (5 0=~y ey == (4.7)

where v(s) is the relative velocity of vortices in a system of coordinates fixed rigidly to the grid; s is the
arc length along the vortex line,

We shall now examine the expression for the intensity of an elementary free vortex with an arc-length
coordinate s:
dT) (5) = ¥ (5) ds.
Since ds = v(s)dr, taking into account the fact that s and 7 are functions of the parameter p, we obtain with
the help of (4.5) and (4.7)

. 9. Tt ~
dTR () = — 2~ |y @0 =0 (0) dp-
We find the expression for y gk) with the help of (4.3)

~@) 4nko)1§k6k .
Yn = N p {q cos [k (0, + 6n) + Br] — Ty sin [k (0,2 + 0n) + B:1).

Thus, as a result of the transformations performed, the position of the vortex wakes and their intensity
per unit length are determined as functions of the parameters p and t, This permits determining quite simply
the nonstationary component of the complex fluid flow veloeity taking into account the vortex wakes. For the
k-th harmonics of the connected and free vortices of all profiles in the grid, it will equal

N (k) KT
E(k) (Z) — 1 [ P'n + 5‘ Tn dP .
2ni ] z 2z, P z—{{p)

It can be shown that for N — < the complex velocity k) (z) will approach its limiting value, which
equals the velocity induced by the connected and free vortices, continuously distributed along the circle, i.e.,

- ' ~ R ke o
lim 5% (5) =7 () = [ Hﬁm+5*@wp]w (4.8)

Nooo (2n)% 7 e Jo— pei(e+mt—$)

Here, 7 ®)(6) and 5 (K) (p, 6) are continuous functions, coinciding at 6 = 6, with the values _%_'rrﬁf_) (6,) and

N _3% (6.

2nr

Calculating the contour integrals in expressions (4.8) using the theory of residues, we find the values of
V(k) at the control points of the profiles:
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~ &5, exp[— i (wt -+ ¢, g—il ) o aadls a4
T () = — [2nir( n)] { }—?A-HO exp [— ik (@ 4 ) — Pr} (i — kew,477) “9)
-+ ey (g + iTo) B~ exp [ik (03¢ + n) + i) A&”},
where A
B ] _ _ _
AP :~5. o exp {— ik [—52- we (p*— 1) —T, lng]} do,
1.
) 1 L [e= = = 0=
AP = S——Ekﬂ exp{ik[§ 0, (7" — 1)~ Toln o) (4.10)
x5 .
— @ - ®, - R
(G‘)O:Tgv ml:T;-s R:'r_)‘
We introduce the notation
g—iTy=ge ™ AP = g(lh)einf”’ A® gg"ei“g'). (4.11)
From the impenetrability condition (3.2), we obtain using (4.2) and (4.9)
- g, cos . -+ g B% cos (2a, + 1, #)
tgfr = co, = "zh(-l ) 4 (4.12)
: 1— cay g, sin 1, 4 cmngR sin (2(::1 -+ !]2)
) (G]
6]& = = N BOR o } .
cos f, -+ cu)I[g1 sin (8, -+ 1,) + £, sin (200, + M, + Bh)]
Analogously to (4.9) we find the value of ¥(K) at the point &: ‘
»® (8) = %C V1 -+ tg* §6hbhgek-l exp i Bx + v -+ 5 — o), (4.13)

oo

where bye™* == 1 — i dP; AP — f ;,3—1 exp {ik [— E—-0—-T, 1n5]} dp.
. ¢ !
Expression (4.13) together with (4.10)-(4.12) determines the complex velocity induced by connected and

free vortices, at the location of the vortex source as a function of coordinates of this location and time.

Summing all harmonics of this velocity and satisfying Eq. (2.1), using (3.3) and (4.1) we find the rela-
tions that must be satisfied by the parameters of the limit cycle &, w, taking into account the influence of the
vortex wakes;

N—-1
X 8 cos b+ +5) = 0,
N—1

60 = -%— V1 -+ tg2§ 21 Shbkgw{_l) sin (ﬁk + e+ E)
h: -

5. Limit Cycle. We shall show that within the framework of the model examined in Sec. 4, the limit cy~
cle of the motion of the vortex source exists, at least, for small values of its parameters
0o € 1, &< 1. (5.1)

Assuming that d ~ 1 and bg ~ 1 for k> 1, in the first equation we need only consider the two terms in the
sum, and in the second only three terms. Then, we shall have

6.6, cos X,

o m — 3,0, €0S ¥, (= Pe +ve + 8); (5.2)
e ) R sin (X, — %, _ )
Wy =~ % Vfl -+ tg2§ [alb]_ G(Osl-x;—')— + 8463173 sin XSJ (53)

Here 6k, Bk, by, and yi are functions of the quantity P o sought and the starting parameters ¢, I'y, @, and
£, R. They are determined with the help of the integrals A(jk) (4.10) and (4.13). We shall examine these inte-
grals.

Let R — 1<« 1. Then for A(lk) we have the estimate

AP <1 (k=1,2,3). (5.4)
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Fig. 3
The improper integrals Agk) (j = 2, 3) are calculated with the help of tables [4] and have the form
AP = —.i—exp [i (g— Yy 7»5"’)) —viln (}JJ]‘))] I (v, —ipphd?) (k=1,2,3), (5.5)
where T'(v, \) is a gamma function; |
Vi =1 — k(L -k iT)2; py = B py = 14
§ = kewy/2; MY = ke/2.

Here, the expressions for Az(k) can be represented approximately as function of the parameter 50:
1 T =Y e =
‘4(21)"’ /‘a— fl eXp(”T‘) ll’l w())v Af)zjzexp (lloln lDO)v Aéa)%fal (5.6)
. ) E

where fj; are complex functions of the parameters ¢ and fﬂ. The values of Agk}, as also the values of fy, do
not depend on w,.

Using (5.4), we obtain from (4.12)
2 (5.7)

g th) 3
cos B -+ cag'! cos %,

14 3 .
[31-::? —2051‘1]5;)—3%, 6y, ==

where %, = arcsin ( S:;gk-).‘ In the case ¢ ~ 1, it follows from (5.5)-(5.7) that
2
w1l 8 =2 @fclfl. | (5.8)
If now (5.8) is substituted into (5.2) and (5.3), then we obtain
B = —hy E%g? (5.9)
.VEP-h*%%ﬂq;hjmﬁzbk (5.10)

where h, are some functions of the parameters ¢ and To- Further, keeping in mind the fact that vy} does not
depend on wg, we find with the help of (5.2) and (5.6)-(5.8)

i — Az = to + % — ([o/2) In 0y, (5.11)
where X, is some bounded function of the parameter ¢ and Fo'

It follows from (5.11) that the solution of the system (5.9) and (5.10) exists in a wide range cf values of
starting parameters c, Fo’ a4, and £, with the exception, possibly of some discrete set of values. However,
the range of values of these parameters is limited by the condition of stability of the limit cycle, which follows
from (4.13) taking into account (5.1) and has the form cos X4 < 0.

LITERATURE CITED

1. N. E. Zhukovskii, "'Vortex theory of a screw propellor,’! in: Complete Collected Works [in Russian],
Vol. 6, ONTI NKTP SSSR, Moscow (1837).

2. V. A. Pukhlii, E. S. Belyanovskii, and I. Ya. Khvoshchevskii, '"Mathematical model of a nonstationary
subsonic flow of an ideal incompressible fluid past a grid of centrifugal fan profiles,’" Dep. Vniis,
Bibliogr. Ukz, Depon., Rukop., No. 3 (1981). No. Register 2346.

3. D. N. Gorelov, V. B. Kruzin, and V. E. Saren, Aerodynamics of Grids in Nonstationary Flow [in Rus-
sian], Nauka, Novosibirsk (1971),

4, 1. 8. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press (1966).

27



